```Date: Fri, 18 Oct 2002 12:42:57 GMT Reply-To: "Jerry W. Lewis" Sender: "SAS(r) Discussion" From: "Jerry W. Lewis" Organization: AT&T Broadband Subject: Re: Least Squares Linear Regression Content-Type: text/plain; charset=us-ascii; format=flowed Using Excel for statistical analysis is NOT for the novice, because so many obvious approaches are poorly implemented. However, Excel does do some things better than SAS. For instance http://groups.google.com/groups?selm=cEe%254.29665%24Gj5.531879%40news-east.usenetserver.com gives an extremly ill-conditioned polynomial fit problem. As noted in http://groups.google.com/groups?selm=3D81E207.6000506%40no_e-mail.com the chart based polynomial trendline computes all coefficients correctly to 9 figures, which is far better than I know how to do in SAS 8.2. Please note that this is a discussion of numerical capabilities, not the wisdom of fitting a high order polynomial to a limited number of data points over a narrow range. Jerry David L. Cassell wrote: > First, *never* use Excel to do statistical analysis, unless > you can afford to get the occasional drastically wrong answer. > [If you are commanded to do so for a homework assignment, then > the failure of Excel clearly won't be counted against you.] > If you're asking in a SAS newsgroup/list, you should be using > SAS to make sure that ill-conditioned data don't cause your > analysis software to fail in embarrassing ways. > > Second, your so-called 'Multiple R' is really just the square > root of your typical R-squared value from the regression. > That's all. You can get the formula for R-squared from any > intro textbook. > > Go Anteaters! > > David > -- > David Cassell, CSC > Cassell.David@epa.gov > Senior computing specialist > mathematical statistician ```

Back to: Top of message | Previous page | Main SAS-L page